Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2074838

ABSTRACT

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , Viral Load , Adult , Female , Humans , Male , COVID-19/diagnosis , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , United States/epidemiology , Viral Load/drug effects , Viral Load/genetics , Viral Load/statistics & numerical data , Whole Genome Sequencing , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Time Factors , Patient Acceptance of Health Care/statistics & numerical data
2.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2062949

ABSTRACT

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

3.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773987

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
5.
Vaccines (Basel) ; 8(4)2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-927786

ABSTRACT

To optimize the public health response to coronavirus disease 2019 (COVID-19), we must first understand the antibody response to individual proteins on the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the antibody's cross reactivity to other coronaviruses. Using a panel of 37 convalescent COVID-19 human serum samples, we showed that the magnitude and specificity of responses varied across individuals, independent of their reactivity to seasonal human coronaviruses (HCoVs). These data suggest that COVID-19 vaccines will elicit primary humoral immune responses in naïve individuals and variable responses in those previously exposed to SARS-CoV-2. Unlike the limited cross-coronavirus reactivities in humans, serum samples from 96 dogs and 10 cats showed SARS-CoV-2 protein-specific responses focused on non-S1 proteins. The correlation of this response with those to other coronaviruses suggests that the antibodies are cross-reactive and generated to endemic viruses within these hosts, which must be considered in seroepidemiologic studies. We conclude that substantial variation in antibody generation against coronavirus proteins will influence interpretations of serologic data in the clinical and veterinary settings.

SELECTION OF CITATIONS
SEARCH DETAIL